色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示
創作
電子發燒友網>電子資料下載>類型>參考設計>Quad-MXFE多芯片同步指南

Quad-MXFE多芯片同步指南

2021-03-22 | pdf | 1.07MB | 次下載 | 免費

資料介紹

This version (14 Jan 2021 05:35) was approved by Robin Getz.The Previously approved version (03 Jan 2021 21:46) is available.Diff

Multi-Chip Synchronization with the Quad-MxFE + Calibration Board

The Quad-MxFE Platform, in conjunction with the 16 Tx / 16 Rx Calibration Board, has demonstrated multi-chip synchronization (MCS) of the four AD9081s on the system. MCS provides the user with a known, deterministic phase after each power cycle for a given operating frequency. The platform provides MATLAB scripts which can be tweaked for a particular customer application to showcase MCS on their own system.

It is helpful to define a few terms prior to a MCS discussion.

  • Phase Alignment: The input RF phases to each ADC channel are identical and the output RF phases from each DAC channel are identical such that full dynamic range and phase noise system-level benefits can be realized
  • Phase Determinism:The phase relationship with respect to Rx0 of each channel is known, but not necessarily identical, after full power cycle. This allows for factory calibration look-up tables (LUTs) to be populated for setting boot-up NCO phase offsets for all channels
  • Phase Coherency:The phase relationship of each channel is maintained with respect to Rx0 after changing NCO frequency from a calibrated frequency X, then changed to frequency Y, and then changed back to frequency X. This allows for factory calibration to be maintained over multiple frequencies
  • Multi-Chip Synchronization (for AD9081/AD9082): A process which simplifies a required system level calibration algorithm, and which uses both NCO Master-Slave Sync and One-Shot Sync to provide Tx and Rx phase determinism when using multiple MxFEs in a system

The AD9081 contains digital signal processing (DSP) blocks on-silicon to allow for channel-to-channel digital phase and/or amplitude calibration techniques to be implemented as part, or the entirety, of the system level calibration. Some of these phase adjustment knobs occur at the numerically-controlled oscillators (NCOs) residing in the 4x Coarse (Main) Digital Up/Down Converters (DUC/DDCs) and 8x Fine (Channelizer) DUC/DDCs. Additionally, on the Rx side, on-silicon programmable finite impulse response (pFIR) blocks allow for equalization of both phase and amplitude for all Rx channels in the system. Each of these DSP blocks must be synchronized when dealing with multiple MxFE? chips in a system.

Multi-chip synchronization using the AD9081/AD9082 is achieved with the help of two distinct features within the chipset:

  • One-Shot Sync: Helps to align baseband data and some internal clocks
  • NCO Master-Slave Sync: Helps to align the multiple NCOs spanning across all the chips on the platform

There are multiple signals on the platform which are used to achieve MCS. SYSREF signals are used to help achieve One-Shot Sync. GPIO signals are used to implement NCO Master-Slave Sync. Additionally, to achieve MCS while the system undergoes a change in thermal gradients requires use of the PLL phases sent into the device clock pins of each MxFE?.

One-Shot Sync

The one-shot sync feature first requires that the user defines the JESD link parameters (such as M, N’, L, etc.) and then configures the synchronization logic for any desired SYSREF averaging (if using continuous SYSREF pulses). Additionally, desired LEMC delays can be used to force the LEMC to be generated at a certain delay after the SYSREF edge. After this is completed, the user then enables the one-shot sync bit within each digitizer IC and then requests that SYSREF pulses be sent to each IC within the same clock cycle, as shown in the figure above. For the Quad-MxFE Platform, analog fine delays have been introduced within the HMC7043 clock buffer IC to allow synchronous SYSREFs to all digitizer ICs. A subsequent check can be executed to verify the one-shot sync process performed successfully by querying registers within each IC which provide information about the phase relationship between the SYSREF signal and the LEMC boundary of each IC’s link. Once a stable phase is measured (ie. once the SYSREF-LEMC phase register reads ‘0’), the user then knows that the LEMCs of all the digitizer ICs are aligned and the user can then proceed to the NCO master-slave sync process. The subtasks described for the one-shot sync are contained within an application programming interface (API) provided for the AD9081.

NCO Master-Slave Sync

The NCO master-slave sync feature first assigns one of the AD9081 within the subarray to act as a ‘master’ chip, as shown in the above figure. All other digitizers are then deemed ‘slave’ ICs. The master IC is setup such that the GPIO0 pin of this device is configured as an output and routed to the GPIO0 nets of the three slave digitizer ICs. The slave GPIO0 nets are configured as inputs. The user can then choose to trigger on either the SYSREF pulse, the LEMC rising edge, or the LEMC falling edge. The LEMC rising edge is used as the NCO master-slave sync trigger source as default for the base control code provided with the platform, and the GPIO nets are routed through the HDL instead of locally on the subarray. Next, the DDC synchronization bits are toggled low and then high to arm the ADC-side NCO synchronization algorithm. Likewise, the microprocessor align bit is toggled low and then high to arm the DAC-side NCO synchronization algorithm. When this trigger is requested, at the next LEMC rising edge the master digitizer IC asserts high a ‘master out’ signal through its GPIO0 net. This signal propagates to the GPIO0 inputs of each of the slave devices. At the next LEMC edge, all digitizer ICs experience a NCO reset algorithm. After this any LEMC pulses are ignored with regards to the NCO master-slave sync algorithm. As with the one-shot sync, these NCO master-slave sync subtasks are contained within API functions for user ease-of-use.

PLL Synthesizer Phase Adjustments

The ADF4371 PLL synthesizers allow for relative sample clock phase adjustments injected into each digitizer IC. Thermal drift, and the resulting PLL phase drift between the sample clock and the SYSREF of each IC, is compensated by creating a feedback mechanism which ensures that the first transmit channel of each AD9081 is phase-aligned to the first AD9081 IC’s first transmit channel, as shown in the figure below. To achieve this feedback loop, the first transmit channel of each MxFE? outputs a signal which differentiates itself from the other transmit channels. These four signals are combined and sent into a common receiver, which for this system is labeled Rx0.

A receiver data capture is obtained which then allows the user to apply cross-correlation techniques to determine the complex phase offsets between these four transmit channels, φTxOffset. The ADF4371 PLL synthesizer ICs contain within them a voltage-controlled oscillator (VCO) which are operating at a frequency fVCO_PLL. The measured phase offsets φTxOffset are then related to the required PLL phase adjustment φPLL_Adj and the RF frequency fcarrier such that:
/phi_{PLLAdj}=[{f_{VCOPLL}}/{f_{carrier}}]/phi_{TxOffset}

Using this formula, the ADF4371 PLL synthesizer phases can be adjusted by a new known amount to establish a common Tx baseline between all digitizer ICs for all power cycles, as shown in the figure below. The open circles for each channel shown in the figure correspond to the first power cycle, whereas all the other solid dots correspond to subsequent power cycles. As can be seen from this figure, the calibrated Tx phase offsets for the first (and second) channelizers of all AD9081s are phase aligned. The second channelizer of each digitizer IC is aligned in this instance as well because two channelizers are used for each DAC in the system.

Publications

下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1HFSS電磁仿真設計應用詳解PDF電子教程免費下載
  2. 24.30 MB   |  128次下載  |  1 積分
  3. 2雷達的基本分類方法
  4. 1.25 MB   |  4次下載  |  4 積分
  5. 3電感技術講解
  6. 827.73 KB  |  2次下載  |  免費
  7. 4從 MSP430? MCU 到 MSPM0 MCU 的遷移指南
  8. 1.17MB   |  2次下載  |  免費
  9. 5有源低通濾波器設計應用說明
  10. 1.12MB   |  2次下載  |  免費
  11. 6RA-Eco-RA2E1-48PIN-V1.0開發板資料
  12. 35.59 MB  |  2次下載  |  免費
  13. 7面向熱插拔應用的 I2C 解決方案
  14. 685.57KB   |  1次下載  |  免費
  15. 8愛普生有源晶體振蕩器SG3225EEN應用于儲能NPC、新能源
  16. 317.46 KB  |  1次下載  |  免費

本月

  1. 12024年工控與通信行業上游發展趨勢和熱點解讀
  2. 2.61 MB   |  763次下載  |  免費
  3. 2HFSS電磁仿真設計應用詳解PDF電子教程免費下載
  4. 24.30 MB   |  128次下載  |  1 積分
  5. 3繼電保護原理
  6. 2.80 MB   |  36次下載  |  免費
  7. 4正激、反激、推挽、全橋、半橋區別和特點
  8. 0.91 MB   |  32次下載  |  1 積分
  9. 5labview實現DBC在界面加載配置
  10. 0.57 MB   |  21次下載  |  5 積分
  11. 6在設計中使用MOSFET瞬態熱阻抗曲線
  12. 1.57MB   |  15次下載  |  免費
  13. 7GBT 4706.1-2024家用和類似用途電器的安全第1部分:通用要求
  14. 7.43 MB   |  14次下載  |  免費
  15. 8AD18學習筆記
  16. 14.47 MB   |  8次下載  |  2 積分

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935113次下載  |  10 積分
  3. 2開源硬件-PMP21529.1-4 開關降壓/升壓雙向直流/直流轉換器 PCB layout 設計
  4. 1.48MB  |  420061次下載  |  10 積分
  5. 3Altium DXP2002下載入口
  6. 未知  |  233084次下載  |  10 積分
  7. 4電路仿真軟件multisim 10.0免費下載
  8. 340992  |  191360次下載  |  10 積分
  9. 5十天學會AVR單片機與C語言視頻教程 下載
  10. 158M  |  183329次下載  |  10 積分
  11. 6labview8.5下載
  12. 未知  |  81578次下載  |  10 積分
  13. 7Keil工具MDK-Arm免費下載
  14. 0.02 MB  |  73804次下載  |  10 積分
  15. 8LabVIEW 8.6下載
  16. 未知  |  65985次下載  |  10 積分
主站蜘蛛池模板: 好男人在线高清WWW免费观看 | 粗大分开挺进内射| 在线观看日本免费| 亚洲视频在线免费看| 亚洲 制服 欧美 中文字幕| 天堂岛www| 视频在线免费观看| 日日噜噜夜夜狠狠视频| 青青久| 欧美日韩视频一区二区三区| 两性色午夜视频免费国产| 久久精品免费看网站| 黄网13区| 久久强奷乱码老熟女| 久久青青无码AV亚洲黑人| 久久成人精品免费播放| 久久精品亚洲AV中文2区金莲| 精品国产中文字幕在线视频| 黄色三级视频在线| 久久精品中文字幕免费| 开心色99xxxx开心色| 麻豆国产人妻欲求不满| 免费a视频在线观看| 女生扒开尿口| 漂亮美女2018完整版| 日韩欧美一区二区中文字幕| 日本人作爰啪啪全过程| 色中色论坛网站| 亚洲 欧美 制服 校园 动漫| 亚洲精品久久久久一区二区三 | 欧美成人猛片aaaaaaa| 欧美性喷潮xxxx| 水蜜桃亚洲一二三四在线 | 蜜柚视频高清在线| 青青在线视版在线播放| 神马电影我不卡国语版| 亚洲成A人片在线观看中文不卡 | 少妇精油按摩| 亚洲免费视频在线观看| 1973性农场未删减版| 大胸美女洗澡扒奶衣挤奶|