色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示
創作
電子發燒友網>電子資料下載>類型>參考設計>Cn0411用戶指南

Cn0411用戶指南

2021-03-23 | pdf | 470.86KB | 次下載 | 免費

資料介紹

This version (14 Jan 2021 05:31) was approved by Robin Getz.The Previously approved version (03 Jan 2021 21:46) is available.Diff

EVAL-CN0411-ARDZ Shield Overview

CN0411 is a total dissolved solids measurement (TDS) system using direct measurement of conductivity of the solution. The system can measure low to high conductivity levels ranging from 1 μS to 0.1 S and can accommodate 2-wire conductivity probes of different cell constants from 0.01 to 10. Temperature compensation is performed using either a 100 ? or 1000 ? 2-wire RTD.

CN0411 generates a bipolar square wave excitation across the conductivity probe using the AD5683R, a 16-bit SPI voltage DAC, and the ADG884, ultra-low on-resistance CMOS Dual 2:1 SPDT switch. The frequency of the excitation is controlled by a PWM signal from the microcontroller which can be set to either 2.4 kHz or 94 Hz via the system software.

The range of conductivity measurement can be adjusted using gain resistors switched using the ADG1608, a 16:1 multiplexer.

The conductivity cell signal is measured by the AD8220, a low-input current JFET instrumentation amplifier. Then, A track-and-hold amplifier implemented using AD8628, a zero-drift rail-to-rail single supply op amp, samples the signal for the AD7124-8, a low noise low power 24-bit Sigma-Delta ADC. With the software calibration, the calibrated system accuracy is less than 2% for all conductivity ranges from 1 μS to 0.01 S and less than 7% for conductivity ranges greater than 0.01 S. This makes the system reliable for conductivity measurement used to compute TDS.

This design uses a combination of components that allow for single supply operation which minimize circuit complexity, making this suitable for low-power and portable instrument applications. Applications include chemical water analysis for field research, and monitoring water systems and natural bodies of water.


Total Dissolved Solids Measurement

The measurement of the total dissolved solids in a solution relies primarily on the conductivity and the temperature of the solution. Furthermore, the TDS factor, used to compute the TDS from the temperature-compensated conductivity value, varies at a defined range for different types of solutions based on the type of dissolved solids. The temperature coefficient used for compensation also depends on the type of the dissolved solid. Thus, total dissolved solids remains a general measure for water quality and cannot distinguish between the constituents of the dissolved solids in the solution.

Hardware Connection and Jumper Configurations

The CN0411 connects to the EVAL-ADICUP360 using the Arduino mating headers. Shown below is the CN0411, connected to the EVAL-ADICUP360, with labels for the hardware connections and jumper headers.

Sensor Connections

The CN-0411 has three hardware connectors which have no polarity and can connect directly to the sensors:

J1 is for 2-wire conductivity probes with a BNC plug. This is compatible with common commercial probes. Below are recommended probes of different cell constants.

Cell Constant Description Images
0.1 CS SK21T 2-Electrode Glass Cell
1 CS SK20T 2-Electrode Glass Cell
10 CS SK23T 2-Electrode Glass Cell

P2 is a terminal block connector for conductivity probe's with no BNC plug. The connection diagram is shown below
P3 is a terminal block connector for a 2-wire RTD. The software is compatible with Pt100 and Pt1000 RTDs. The connection diagram is shown below

Jumper Configurations

The CN0411 has four jumper headers which configure different settings as shown below. Also, the default shunt positions are highlighted.

Sensor Select

PRB_SEL selects the connection to the conductivity sensor. By default, the shunt is placed connecting pin 1 and 2 to measure the conductivity of the solution.

PRB_SEL Shunt Position Conductivity Sensor Connection
1 and 2 Conductivity Probe
3 and 4 200Ω Precision Resistor
5 and 6 20Ω Precision Resistor

* Connecting Pins 1 and 2 allows the system to measure the conductivity of the solution.

  • Connecting Pins 3 and 4 allows the system to calibrate in the 0.01 S range
  • Connecting Pins 5 and 6 allows the system to calibrate in the 0.1 S range

Signal Input Select

P6 selects selects the input to the AD8220 instrumentation amplifier. By default, the shunt position connects pins 1 and 2 to sample the conductivity sensor.

P6 Shunt Position AD8220 Instrumentation Amplifier Input
1 and 2 Conductivity Signal
2 and 3 AGND

* By connecting Pins 1 and 2, the AD8220 instrumentation amplifier samples the signal from the connected conductivity sensor.

  • Connecting Pins 2 and 3 allows the system to perform zero-scale calibration of the system.

ADC Chip Select

CS_ADC selects the chip select GPIO pin for the AD7124-8. This allows for multiple board stack-up of CN0411 for customer applications requiring 2 conductivity readings. By default, the shunt position connects pins 3 and 4 to set the chip select to GPIO30.

CS_ADC Shunt Position AD7124-4 Chip Select
1 and 2 DIGI1 Pin 1 or GPIO28
3 and 4 DIGI1 Pin 2 or GPIO30

DAC Chip Select

CS_DAC selects the chip select GPIO pin for the AD5683R. This allows multiple board stack-up of CN0411 for customer applications requiring the interface of 2 conductivity sensors. By default, the shunt position connects pins 1 and 2 to set the chip select to GPIO26.

CS_DAC Shunt Position AD5683R Chip Select
1 and 2 DIGI1 Pin 3 or GPIO26
3 and 4 DIGI0 Pin 3 or GPIO15

Conductivity Measurement

The system measures conductivity using a 2-wire conductivity probe to be immersed in the solution as shown below.

It is preferable that the conductivity probe be positioned at the center of the container to maximize the accuracy of the measurement. The cell constant of a 2-wire conductivity probe is the distance between its two cells or electrodes divided by their inner surface area. The cell constant of the conductivity probe sets the range of conductivity measurements it is suitable to use. Proper selection of the probe makes it easier for the system to measure at a certain conductivity range. Below is the table listing the range of conductivity measurements appropriate for the probe's cell constant.

Cell Constant Range of Measured Conductivity
0.01 < 0.1 μS/cm
0.1 0.1 μS/cm to 100 μS/cm
1 100 μS/cm to 10 mS/cm
10 10 mS/cm to 1 S/cm
Conductivity probes have different rated voltages. Before connecting the probe to the CN0411, check the excitation voltage setting in the software and configure it to within the specified rating.

The frequency of the excitation signal across the conductivity cells depends on the range of conductivity measurement. The system can switch between 94 Hz, suitable for measurements in the μS range, and 2.4kHz suitable for measurements in the mS range and above.

Temperature Measurement

The system can use either Pt100 or Pt1000 RTD sensors and is configurable through the software. Most commercial probes in the market have these RTDs built in the conductivity probe.
The temperature coefficient depends on the type of solution and can be configured in the software. The system has built-in stored values for sodium chloride (NaCl) and potassium chloride (KCl) solutions as shown in the table below.

Salt Solution Temperature Coefficient (α)
Potassium Chloride (KCl) 1.88
Sodium Chloride (NaCl) 2.14

Total Dissolved Solids Measurement

The total dissolved solids in the solution is computed from the temperature-compensated conductivity measurement by the TDS factor which varies per type of dissolved solid. This can be configured through software and the system has built-in stored values for NaCl and KCl solutions.

Salt Solution Range of TDS Factor (ke)
Potassium Chloride (KCl) 0.50 to 0.57
Sodium Chloride (NaCl) 0.47 to 0.50

Calibration and Auto-ranging

The system can automatically select the proper gain resistance from the user-defined excitation voltage when commanding the system to measure TDS. Below is the procedure used to select the gain resistance appropriate to the measured conductivity range.

To decrease the effect of system noise to the measurement, the zero-scale calibration should be performed once per board. Every measured voltage level will be referenced to the zero-scale calibration voltage. Below are the steps to perform zero-scale calibration.

  1. Place the shunt position of jumper header P6 to connect pins 2 and 3.
  2. Command the software to perform zero-scale calibration.
  3. Wait for the command to finish
  4. Place the shunt position of the jumper header P6 back to pins 1 and 2

To increase the accuracy of the system in the 0.01 S range or 0.1 S range, reference-resistor calibration should be performed once per board. This calibrates the system to a known 200 Ω and 20 Ω precision resistance, respectively. Below are the steps to perform reference-resistor calibration.

  1. Place the shunt position of PRB_SEL to connect pins 3 and 4 for a 0.01 S range calibration or to connect pins 5 and 6 for a 0.1 S range calibration.
  2. Command the software to perform a reference resistor calibration
  3. Wait for the command to finish
  4. Place the shunt position of the jumper header PRB_SEL back to pins 1 and 2

Software

Schematic, PCB Layout, Bill of Materials

EVAL-CN0411-ARDZ Design & Integration Files

  • Schematics
  • PCB Layout
  • Bill of Materials
  • Allegro Project

End of Document

評論

查看更多

下載排行

本周

  1. 1電子電路原理第七版PDF電子教材免費下載
  2. 0.00 MB  |  1491次下載  |  免費
  3. 2單片機典型實例介紹
  4. 18.19 MB  |  95次下載  |  1 積分
  5. 3S7-200PLC編程實例詳細資料
  6. 1.17 MB  |  27次下載  |  1 積分
  7. 4筆記本電腦主板的元件識別和講解說明
  8. 4.28 MB  |  18次下載  |  4 積分
  9. 5開關電源原理及各功能電路詳解
  10. 0.38 MB  |  11次下載  |  免費
  11. 6100W短波放大電路圖
  12. 0.05 MB  |  4次下載  |  3 積分
  13. 7基于單片機和 SG3525的程控開關電源設計
  14. 0.23 MB  |  4次下載  |  免費
  15. 8基于AT89C2051/4051單片機編程器的實驗
  16. 0.11 MB  |  4次下載  |  免費

本月

  1. 1OrCAD10.5下載OrCAD10.5中文版軟件
  2. 0.00 MB  |  234313次下載  |  免費
  3. 2PADS 9.0 2009最新版 -下載
  4. 0.00 MB  |  66304次下載  |  免費
  5. 3protel99下載protel99軟件下載(中文版)
  6. 0.00 MB  |  51209次下載  |  免費
  7. 4LabView 8.0 專業版下載 (3CD完整版)
  8. 0.00 MB  |  51043次下載  |  免費
  9. 5555集成電路應用800例(新編版)
  10. 0.00 MB  |  33562次下載  |  免費
  11. 6接口電路圖大全
  12. 未知  |  30320次下載  |  免費
  13. 7Multisim 10下載Multisim 10 中文版
  14. 0.00 MB  |  28588次下載  |  免費
  15. 8開關電源設計實例指南
  16. 未知  |  21539次下載  |  免費

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935053次下載  |  免費
  3. 2protel99se軟件下載(可英文版轉中文版)
  4. 78.1 MB  |  537793次下載  |  免費
  5. 3MATLAB 7.1 下載 (含軟件介紹)
  6. 未知  |  420026次下載  |  免費
  7. 4OrCAD10.5下載OrCAD10.5中文版軟件
  8. 0.00 MB  |  234313次下載  |  免費
  9. 5Altium DXP2002下載入口
  10. 未知  |  233046次下載  |  免費
  11. 6電路仿真軟件multisim 10.0免費下載
  12. 340992  |  191183次下載  |  免費
  13. 7十天學會AVR單片機與C語言視頻教程 下載
  14. 158M  |  183277次下載  |  免費
  15. 8proe5.0野火版下載(中文版免費下載)
  16. 未知  |  138039次下載  |  免費
主站蜘蛛池模板: 5g天天奭视频| 欧洲亚洲精品A片久久99果冻| 一本大道手机在线看| 女性酥酥影院| 精品国产午夜肉伦伦影院| 拔萝卜视频免费看高清| 一区视频免费观看| 午夜看片a福利在线观看| 欧美成人一区二免费视频| 黄色软件视频app| 国产 在线 亚洲 欧美 动漫| 1788福利视频在视频线| 亚洲a免费| 色噜噜噜噜亚洲第一| 免费观看的毛片| 久久 这里只精品 免费| 国产人妻精品无码AV在线五十路| 阿力gv资源| 99精品在线观看| 在线少女漫画| 亚洲永久精品ww47app| 亚洲AV午夜福利精品香蕉麻豆 | 欧洲xxxxx| 麻1豆传媒2021精品| 久久精品热线免费| 精品96在线观看影院| 国产亚洲精品网站在线视频| 国产成人精品系列在线观看| 成年人视频在线免费观看| av先锋影音资源男人站| 1300部真实小Y女视频合集| 野花日本韩国视频免费高清观看 | 我与旗袍老师疯狂床震| 日本人69xxx| 日本久久久久亚洲中字幕| 欧美人与动牲交A精品| 男人把女人桶到爽免费看视频 | 黄色毛片a| 国产欧美一区二区三区久久| 国产国语在线播放视频| 国产成人国产在线观看入口|