資料介紹
Table of Contents
AD7799 - Microcontroller No-OS Driver
Supported Devices
Evaluation Boards
Overview
The AD7798/AD7799 are low power, low noise, complete analog front ends for high precision measurement applications. The AD7798/AD7799 contains a low noise, 16-/24-bit Σ-Δ ADC with three differential analog inputs. The on-chip, low noise instrumentation amplifier means that signals of small amplitude can be interfaced directly to the ADC. With a gain setting of 64, the rms noise is 27 nV for the AD7799 and 40 nV for the AD7798 when the update rate equals 4.17 Hz.
On-chip features include a low-side power switch, reference detect, programmable digital output pins, burnout currents, and an internal clock oscillator. The output data rate from the part is software-programmable and can be varied from 4.17 Hz to 470 Hz.
The part operates with a power supply from 2.7 V to 5.25 V. The AD7798 consumes a current of 300 μA typical, whereas the AD7799 consumes 380 μA typical. Both devices are housed in a 16-lead TSSOP package.
Applications
- Weigh scales
- Pressure measurement
- Gas analysis
- Industrial process control
- Instrumentation
- Portable instrumentation
- Blood analysis
- Smart transmitters
- Liquid/gas chromotography 6-digit DVM
The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for Renesas platforms.
HW Platform(s):
Driver Description
The driver contains two parts:
- The driver for the AD7799 part, which may be used, without modifications, with any microcontroller.
- The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.
The Communication Driver has a standard interface, so the AD7799 driver can be used exactly as it is provided. There are three functions which are called by the AD7799 driver:
- SPI_Init() – initializes the communication peripheral.
- SPI_Write() – writes data to the device.
- SPI_Read() – reads data from the device.
Driver architecture
The implementation of these three functions depends on the used microcontroller.
The following functions are implemented in this version of AD7799 driver:
Function | Description |
---|---|
unsigned char AD7799_Init(void) | Initializes AD7799 and checks if the device is present. |
void AD7799_Reset(void) | Sends 32 consecutive 1's on SPI in order to reset the part. |
unsigned long AD7799_GetRegisterValue(unsigned char regAddress, unsigned char size) | Reads the value of the selected register. |
void AD7799_SetRegisterValue(unsigned char regAddress, unsigned long regValue, unsigned char size) | Writes a value to the register. |
void AD7799_WaitRdyGoLow(void) | Waits for RDY pin to go low. |
void AD7799_SetMode(unsigned long mode) | Sets the operating mode of AD7799. |
void AD7799_SetChannel(unsigned long channel) | Selects the channel of AD7799. |
void AD7799_SetGain(unsigned long gain) | Sets the gain of the In-Amp. |
void AD7799_SetReference(unsigned char type) | Enables or disables the reference detect function. |
Downloads
Renesas RL78G13 Quick Start Guide
This section contains a description of the steps required to run the AD7799 demonstration project on a Renesas RL78G13 platform.
Required Hardware
Required Software
Hardware Setup
An EVAL-AD7799EBZ has to be interfaced with the Renesas Demonstration Kit (RDK) for RL78G13:
EVAL-AD7799EBZ Pin CS → YRDKRL78G13 J11 connector Pin 1 EVAL-AD7799EBZ Pin DIN → YRDKRL78G13 J11 connector Pin 2 EVAL-AD7799EBZ Pin DOUT → YRDKRL78G13 J11 connector Pin 3 EVAL-AD7799EBZ Pin SCLK → YRDKRL78G13 J11 connector Pin 4 EVAL-AD7799EBZ J3 connector Pin AVDD → YRDKRL78G13 J11 connector Pin 6 EVAL-AD7799EBZ J3 connector Pin DGND → YRDKRL78G13 J11 connector Pin 5
Software Setup
With the Applilet3 for RL78G13 tool the following peripherals have to be configured:
CSI10 (Clocked Serial Interface 10) – For the AD7792 part and the ST7579 LCD
Choose to generate the Transmit/receive function for the CSI10 and configure the interface with the following settings:
- Transfer mode setting: Single transfer mode
- Data length setting : 8 bits
- Transfer direction setting: MSB
- Specification of data timing: Type 1
- Transfer rate setting – Clock mode: Internal clock (master)
- Transfer rate setting – Baudrate: 1000000 (bps)
- Interrupt setting – Transfer interrupt priority (INTCSI10): Low
- Uncheck the callback functions.
TM00 (Timer 00) – For the DelayMs() function
Configure TM00 as an interval timer:
- Interval timer setting - Interval value(16 bits): 1 ms
- Interval timer setting - Uncheck Generates INTM00 when counting is started
- Interrupt setting - Uncheck End of timer channel 0 count, generate an interrupt (INTM00)
Watchdog Timer
Disable the watchdog timer:
- Choose for the Watchdog timer operation setting: Unused option.
Reference Project Overview
The demo program samples channel 1 at 16.7 Hz. The ADC is configured to work in bipolar mode and the gain of the In-Amp is set to 1. The hex values of the configuration and data registers are displayed on the LCD. The value of the Data register is also formatted to be displayed in mV.
Software Project Tutorial
This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RL78G13 for controlling and monitoring the operation of the ADI part.
Two software applications have to be used: Applilet3 for RL78G13 (a tool that automatically generates device drivers for MCU peripheral functions) and IAR Embedded Workbench for Renesas RL78 (the integrated development environment).
Step 1 - Applilet3 for RL78G13
- Run the Applilet3 for RL78G13 tool and create a new project for R5F100LE processor. Select IAR Compiler build tool, a project name, a location for the new project and press OK.
- Keep the default Pin assignment setting and click Fix settings.
- Now the desired peripherals can be configured and the code can be generated. For example, if the clocked serial interface 10 (CSI10) has to be configured, select the Serial peripheral, choose for the Channel 2 of Serial Array Unit 0 (SAU0) the CSI10 interface, Transmit/receive function option and then go to CSI10 tab.
- To configure the CSI10 interface for serial transmissions of 8 bits, with MSB first, with the data captured on clock's rising edge, with a frequency of the clock of 1 MHz and the idle state high, the settings from the following image have to be made.
- After all the desired peripherals are configured click on the Generate Code button and a new workspace and a new project for the IAR Embedded Workbench will be generated. After the code was generated close the Applilet3 for RL78G13 tool.
Step 2 - IAR Embedded Workbench for Renesas RL78
- Run the IAR Embedded Workbench and open the workspace created with the Applilet3 tool.
- Copy the files extracted from the zip file into the user_src folder, located in the project’s folder.
- The new source files have to be included into the project. Add in the user_src group the files from the corresponding folder (Right click on the group and select Add – Add Files…). Because a new Main file was included the r_main.c file from the applilet_src group has to be deleted (Right click on the file and select Remove).
- Now the debugger driver has to be selected from the project’s options. Right click on the project name and select Options. From the Debugger category choose the TK Debugger Driver.
- Now, the project is ready to be compiled and downloaded on the board. Press the F7 key to compile it. Press CTRL + D to download and debug the project.
Renesas RX62N Quick Start Guide
This section contains a description of the steps required to run the AD7799 demonstration project on a Renesas RX62N platform.
Required Hardware
Required Software
Hardware Setup
An EVAL-AD7799EBZ board has to be interfaced with the Renesas Demonstration Kit (RDK) for RX62N:
EVAL-AD7799EBZ Pin DOUT → YRDKRX62N J8 connector Pin 22 EVAL-AD7799EBZ Pin DIN → YRDKRX62N J8 connector Pin 19 EVAL-AD7799EBZ Pin SCLK → YRDKRX62N J8 connector Pin 20 EVAL-AD7799EBZ Pin CS → YRDKRX62N J8 connector Pin 15 EVAL-AD7799EBZ J3 connector Pin AVDD → YRDKRX62N J8 connector Pin 3 EVAL-AD7799EBZ J3 connector Pin DGND → YRDKRX62N J8 connector Pin 4
Reference Project Overview
The demo program samples channel 1 at 16.7 Hz. The ADC is configured to work in bipolar mode and the gain of the In-Amp is set to 1. The hex values of the configuration and data registers are displayed on the LCD. The value of the Data register is also formatted to be displayed in mV.
Software Project Setup
This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RX62N for controlling and monitoring the operation of the ADI part.
- Run the High-performance Embedded Workshop integrated development environment.
- A window will appear asking to create or open project workspace. Choose “Create a new project workspace” option and press OK.
- From “Project Types” option select “Application”, name the Workspace and the Project “ADIEvalBoard”, select the “RX” CPU family and “Renesas RX Standard” tool chain. Press OK.
- A few windows will appear asking to configure the project:
- In the “Select Target CPU” window, select “RX600” CPU series, “RX62N” CPU Type and press Next.
- In the “Option Setting” windows keep default settings and press Next.
- In the “Setting the Content of Files to be generated” window select “None” for the “Generate main() Function” option and press Next.
- In the “Setting the Standard Library” window press “Disable all” and then Next.
- In the “Setting the Stack Area” window check the “Use User Stack” option and press Next.
- In the “Setting the Vector” window keep default settings and press Next.
- In the “Setting the Target System for Debugging” window choose “RX600 Segger J-Link” target and press Next.
- In the “Setting the Debugger Options” and “Changing the Files Name to be created” windows keep default settings, press Next and Finish.
- The workspace is created.
- The RPDL (Renesas Peripheral Driver Library) has to integrated in the project. Unzip the RPDL files (double-click on the file “RPDL_RX62N.exe”). Navigate to where the RPDL files were unpacked and double-click on the “Copy_RPDL_RX62N.bat” to start the copy process. Choose the LQFP package, type the full path where the project was created and after the files were copied, press any key to close the window.
- The new source files have to be included in the project. Use the key sequence Alt, P, A to open the “Add files to project ‘ADIEvalBoard’” window. Double click on the RPDL folder. From the “Files of type” drop-down list, select “C source file (*.C)”. Select all of the files and press Add.
- To avoid conflicts with standard project files remove the files “intprg.c” and “vecttbl.c” which are included in the project. Use the key sequence Alt, P, R to open the “Remove Project Files” window. Select the files, click on Remove and press OK.
- Next the new directory has to be included in the project. Use the key sequence Alt, B, R to open the “RX Standard Toolchain” window. Select the C/C++ tab, select “Show entries for: Include file directories” and press Add. Select “Relative to: Project directory”, type “RPDL” as sub-directory and press OK.
- The library file path has to be added in the project. Select the Link/Library tab, select “Show entries for: Library files” and press Add. Select “Relative to: Project directory”, type “RPDL/RX62N_library” as file path and press OK.
- Because the “intprg.c” file was removed the “PIntPrg” specified in option “start” has to be removed. Change “Category” to “Section”. Press “Edit”, select “PIntPRG” and press “Remove”. From this window the address of each section can be also modified. After all the changes are made press OK two times.
- At this point the files extracted from the zip file located in the “Software Tools” section have to be added into the project. Copy all the files from the archive into the project folder.
- Now, the files have to be included in the project. Use the key sequence Alt, P, A to open the “Add files to project ‘ADIEvalBoard’” window. Navigate into ADI folder. From the “Files of type” drop-down list, select “Project Files”. Select all the copied files and press Add.
- Now, the project is ready to be built. Press F7. The message after the Build Process is finished has to be “0 Errors, 0 Warnings”. To run the program on the board, you have to download the firmware into the microprocessor’s memory.
More information
- Example questions:
- An error occurred while fetching this feed: http://ez.analog.com/community/feeds/allcontent/atom?community=2077
- AD5443-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5449-微控制器無操作系統(tǒng)驅(qū)動程序
- AD7291-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5790-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5162-微控制器無操作系統(tǒng)驅(qū)動程序
- AD7298-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5933-瑞薩微控制器平臺的無操作系統(tǒng)驅(qū)動程序
- AD5629R-微控制器無操作系統(tǒng)驅(qū)動程序
- AD5252-微控制器無操作系統(tǒng)驅(qū)動程序
- AD9833-微控制器無操作系統(tǒng)驅(qū)動程序
- AD7887-微控制器無操作系統(tǒng)驅(qū)動程序
- AD7734-微控制器無操作系統(tǒng)驅(qū)動程序
- AD8403-微控制器無操作系統(tǒng)驅(qū)動程序
- AD7176-微控制器無操作系統(tǒng)驅(qū)動程序
- AD4112微控制器無操作系統(tǒng)驅(qū)動程序
- 深度解析全球操作系統(tǒng)格局 676次閱讀
- 為MAXQ2000微控制器實現(xiàn)JTAG自舉加載程序主控 984次閱讀
- 實時時鐘為微控制器系統(tǒng)增加了精確的計時功能 1121次閱讀
- 了解和使用無操作系統(tǒng)和平臺驅(qū)動程序 1066次閱讀
- 基于具有USB功能的STM32微控制器 3682次閱讀
- 嵌入式Linux內(nèi)核的驅(qū)動程序開發(fā)是怎樣的 1415次閱讀
- 淺談電腦驅(qū)動程序的工作原理 詳解電腦驅(qū)動程序意義 2.9w次閱讀
- 基于嵌入式Linux內(nèi)核的系統(tǒng)設(shè)備驅(qū)動程序開發(fā)設(shè)計 1113次閱讀
- 基于Linux2.6.30開發(fā)DS18B20的驅(qū)動程序的類型和文件操作接口函數(shù)詳解 1377次閱讀
- 微控制器的相關(guān)知識介紹(含義、編程語言) 5139次閱讀
- 基于STM32的數(shù)字PDA系統(tǒng)軟件系統(tǒng)設(shè)計 1480次閱讀
- 8255A驅(qū)動程序 3193次閱讀
- 8155驅(qū)動程序 3057次閱讀
- 基于STM32ZET6控制器的數(shù)字PDA系統(tǒng)的設(shè)計 1504次閱讀
- Xilinx設(shè)備的驅(qū)動程序 7967次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費下載
- 0.00 MB | 1491次下載 | 免費
- 2單片機典型實例介紹
- 18.19 MB | 95次下載 | 1 積分
- 3S7-200PLC編程實例詳細資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識別和講解說明
- 4.28 MB | 18次下載 | 4 積分
- 5開關(guān)電源原理及各功能電路詳解
- 0.38 MB | 11次下載 | 免費
- 6100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 7基于單片機和 SG3525的程控開關(guān)電源設(shè)計
- 0.23 MB | 4次下載 | 免費
- 8基于AT89C2051/4051單片機編程器的實驗
- 0.11 MB | 4次下載 | 免費
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費
- 4LabView 8.0 專業(yè)版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費
- 5555集成電路應(yīng)用800例(新編版)
- 0.00 MB | 33562次下載 | 免費
- 6接口電路圖大全
- 未知 | 30320次下載 | 免費
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費
- 8開關(guān)電源設(shè)計實例指南
- 未知 | 21539次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537793次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191183次下載 | 免費
- 7十天學(xué)會AVR單片機與C語言視頻教程 下載
- 158M | 183277次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138039次下載 | 免費
評論
查看更多