資料介紹
Table of Contents
AD7193 - No-OS Driver for Microchip Microcontroller Platforms
Supported Devices
Evaluation Boards
Overview
The AD7193 is a low noise, complete analog front end for high precision measurement applications. It contains a low noise, 24-bit sigma-delta (Σ-Δ) analog-to-digital converter (ADC). The on-chip low noise gain stage means that signals of small amplitude can interface directly to the ADC.
The device can be configured to have four differential inputs or eight pseudo differential inputs. The on-chip channel sequencer allows several channels to be enabled simultaneously, and the AD7193 sequentially converts on each enabled channel, simplifying communication with the part. The on-chip 4.92 MHz clock can be used as the clock source to the ADC or, alternatively, an external clock or crystal can be used. The output data rate from the part can be varied from 4.7 Hz to 4.8 kHz.
The device has a very flexible digital filter, including a fast settling option. Variables such as output data rate and settling time are dependent on the option selected. The AD7193 also includes a zero latency option.
The part operates with a power supply from 3 V to 5.25 V. It consumes a current of 4.65 mA, and it is available in a 28-lead TSSOP package and a 32-lead LFCSP package.
Applications
The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for different microcontroller platforms.
Driver Description
The driver contains two parts:
- The driver for the AD7193 part, which may be used, without modifications, with any microcontroller.
- The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.
The Communication Driver has a standard interface, so the AD7193 driver can be used exactly as it is provided.
There are three functions which are called by the AD7193 driver:
- SPI_Init() – initializes the communication peripheral.
- SPI_Write() – writes data to the device.
- SPI_Read() – reads data from the device.
SPI driver architecture
The following functions are implemented in this version of AD7193 driver:
Function | Description |
---|---|
char AD7193_Init(void) | Checks if the AD7139 part is present. |
void AD7193_SetRegisterValue(unsigned char registerAddress, unsigned long registerValue, unsigned char bytesNumber, unsigned char modifyCS) | Writes data into a register. |
unsigned long AD7193_GetRegisterValue(unsigned char registerAddress, unsigned char bytesNumber, unsigned char modifyCS) | Reads the value of a register. |
void AD7193_Reset(void) | Resets the device. |
void AD7193_SetPower(unsigned char pwrMode) | Set device to idle or power-down. |
void AD7193_WaitRdyGoLow(void) | Waits for RDY pin to go low. |
void AD7193_ChannelSelect(unsigned short channel) | Selects the channel to be enabled. |
void AD7193_Calibrate(unsigned char mode, unsigned char channel) | Performs the given calibration to the specified channel. |
void AD7193_RangeSetup(unsigned char polarity, unsigned char range) | Selects the polarity of the conversion and the ADC input range. |
unsigned long AD7193_SingleConversion(void) | Returns the result of a single conversion. |
unsigned long AD7193_ContinuousReadAvg(unsigned char sampleNumber) | Returns the average of several conversion results. |
float AD7193_TemperatureRead(void) | Read data from temperature sensor and converts it to Celsius degrees. |
float AD7193_ConvertToVolts(unsigned long rawData, float vRef) | Converts 24-bit raw data to volts. |
HW Platform(s):
Downloads
- PmodAD5 Demo for PIC32MX320F128H: https://github.com/analogdevicesinc/no-OS/tree/master/Microchip/PIC32MX320F128H/PmodAD5
- PIC32MX320F128H Common Drivers: https://github.com/analogdevicesinc/no-OS/tree/master/Microchip/PIC32MX320F128H/Common
Digilent Cerebot MX3cK Quick Start Guide
This section contains a description of the steps required to run the AD7193 demonstration project on a Digilent Cerebot MX3cK platform.
Required Hardware
Required Software
- The AD7193 demonstration project for PIC32MX320F128H.
The AD7193 demonstration project for PIC32MX320F128H consists of three parts: the AD7193 Driver, the PmodAD5 Demo for PIC32MX320F128H and the PIC32MX320F128H Common Drivers.
All three parts have to be downloaded.
Hardware Setup
A PmodAD5 has to be connected to the JE connector of Cerebot MX3cK development board.
- When using AVDD > DVDD (= 3.3V), JP1 on PmodAD5 must be removed. The range for AVDD is 3.0V ≤ AVDD ≤ 5.25V
Reference Project Overview
The following commands were implemented in this version of AD7193 reference project for Cerebot MX3cK board.
Command | Description |
---|---|
help? | Displays all available commands. |
reset! | Resets the AD7193. |
polarity? | Displays the polarity value. |
polarity= | Sets the polarity value. Accepted values: 0 - Bipolar mode. 1 - Unipolar mode. |
range? | Displays the range value. |
range= | Sets the range value. Accepted values: 0 - Gain=1. (Input voltage range must be +/-2500mV) 3 - Gain=8. (Input voltage range must be +/-312.5mV) 4 - Gain=16. (Input voltage range must be +/-156.2mV) 5 - Gain=32. (Input voltage range must be +/-78.12mV) 6 - Gain=64. (Input voltage range must be +/-39.06mV) 7 - Gain=128.(Input voltage range must be +/-19.53mV) |
pseudoBit? | Displays the Pseudo Bit value (AD7193_REG_CONF). |
pseudoBit= | Sets the Pseudo Bit Value (AD7193_REG_CONF). Accepted values: 0 - Disables the pseudo differential measuring. 1 - Enables the pseudo differential measuring. |
register? | Displays the value of the data register (AD7193_REG_DATA) for specified channel. Accepted values: 0..7 - selected channel. |
voltage? | Displays the voltage applied to specified channel. Accepted values: 0..7 - selected channel. |
temperature? | Displays the temperature. |
Commands can be executed using a serial terminal connected to the UART1 peripheral of PIC32MX320F128H.
The following image shows a generic list of commands in a serial terminal connected to processor’s UART peripheral.
Software Project Setup
This section presents the steps for developing a software application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.
- Run the MPLAB X integrated development environment.
- Choose to create a new project.
- In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.
- In the Select Device window choose PIC32MX320F128H device and press Next.
- In the Select Tool window select the desired hardware tool and press Next.
- In the Select Compiler window chose the XC32 compiler and press Next.
- In the Select Project Name and Folder window choose a name and a location for the project.
- After the project is created, all the downloaded source files have to be copied in the project folder and included in the project.
- The project is ready to be built and downloaded on the development board.
Digilent Cerebot MC7 Quick Start Guide
This section contains a description of the steps required to run the AD7193 demonstration project on a Digilent Cerebot MC7 platform.
Required Hardware
- PmodAD5
Required Software
Hardware Setup
Reference Project Overview
Following commands were implemented in this version of AD7193 reference project for Cerebot MC7 board.
Command | Description |
---|---|
help? | Displays all available commands. |
reset= | Resets the AD7193. |
mode? | Displays the selected operating mode. |
mode= | Selects the AD7193's operating mode. Accepted values: 0 - 3. |
pseudo? | Displays the Pseudo Bit value (AD7193_REG_CONF). |
pseudo= | Sets the Pseudo Bit Value (AD7193_REG_CONF). Accepted values: 0, 1. |
channel? | Displays the enabled channel. |
channel= | Enables one channel on the AD7193. Accepted values: 0 – 7. |
data? | Initiates a conversion and displays the value of the data register (AD7193_REG_DATA). |
voltage? | Initiates a conversion and displays the voltage applied to enabled channel. |
temperature? | Displays the temperature. |
Commands can be executed using a serial terminal connected to the UART1 peripheral of dsPIC33FJ128MC706A.
The following image shows a list of commands in a serial terminal connected to processor’s UART peripheral.
Software Project Setup
This section presents the steps for developing a software application that will run on the Digilent Cerebot MC7 development board for controlling and monitoring the operation of the ADI part.
- Run the MPLAB X integrated development environment.
- Choose to create a new project.
- In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.
- In the Select Device window choose dsPIC33FJ128MC706A device and press Next.
- In the Select Tool window select the desired hardware tool and press Next.
- In the Select Compiler window chose the XC16 compiler and press Next.
- In the Select Project Name and Folder window choose a name and a location for the project.
- After the project is created, the source files have to be copied in the project folder and included in the project.
- The project is ready to be built and downloaded on the development board.
Digilent Cerebot MX3cK Quick Start Guide - chipKIT Project
This section contains a description of the steps required to run the AD7193 chipKIT demonstration project on a Digilent Cerebot MX3cK platform.
Required Hardware
- PmodAD5
Required Software
Hardware Setup
Reference Project Overview
Following commands were implemented in this version of AD7193 chipKIT reference project for Cerebot MX3cK board.
Command | Description |
---|---|
help? | Displays all available commands. |
reset= | Resets the AD7193. |
mode? | Displays the selected operating mode. |
mode= | Selects the AD7193's operating mode. Accepted values: 0 - 3. |
pseudo? | Displays the Pseudo Bit value (AD7193_REG_CONF). |
pseudo= | Sets the Pseudo Bit Value (AD7193_REG_CONF). Accepted values: 0, 1. |
channel? | Displays the enabled channel. |
channel= | Enables one channel on the AD7193. Accepted values: 0 – 7. |
data? | Initiates a conversion and displays the value of the data register (AD7193_REG_DATA). |
voltage? | Initiates a conversion and displays the voltage applied to enabled channel. |
temperature? | Displays the temperature. |
Commands can be executed using the serial monitor.
Carriage return has to be selected as a line ending character. The required baud rate is 9600 baud.
The following image shows a list of commands in the serial monitor.
Software Project Setup
This section presents the steps for developing a chipKIT application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.
- Under your Sketchbook directory create a folder called “Libraries”; this folder may already exist.
- Unzip the downloaded file in the libraries folder.
- Run the MPIDE environment.
- You should see the new library under Sketch→Import Library, under Contributed.
- Also you should see under File→Examples the demo project for the ADI library.
- Select the ADIDriver example.
- Select the Cerebot MX3cK board from Tools→Board.
- Select the corresponding Serial Communication Port from Tools→Serial Port
- The project is ready to be uploaded on the development board.
More information
- Example questions:
- An error occurred while fetching this feed: http://ez.analog.com/community/feeds/allcontent/atom?community=2077
- AD5160-適用于瑞薩微控制器平臺的無操作系統驅動程序
- AD7156-適用于單片機平臺的無操作系統驅動程序
- AD5160-適用于微芯片微控制器平臺的無操作系統驅動程序
- AD7193-適用于瑞薩微控制器平臺的無操作系統驅動程序
- AD5628-適用于微芯片微控制器平臺的無操作系統驅動程序
- AD7303-適用于單片機平臺的無操作系統驅動程序
- AD7091R-適用于單片機平臺的無操作系統驅動程序
- AD5541A-適用于瑞薩微控制器平臺的無操作系統驅動程序
- ADXL345-適用于單片機平臺的無操作系統驅動程序
- AD7780-適用于單片機平臺的無操作系統驅動程序
- AD5781-適用于瑞薩微控制器平臺的無操作系統驅動程序
- ADT7420-適用于單片機平臺的無操作系統驅動程序
- ADXL362-適用于單片機平臺的無操作系統驅動程序
- ADP5589-適用于單片機平臺的無操作系統驅動程序
- ADXRS453-適用于單片機平臺的無操作系統驅動程序
- 國產RT-thread操作系統在國民技術單片機上移植 395次閱讀
- 了解和使用無操作系統和平臺驅動程序 1066次閱讀
- 51單片機操作系統開發中有什么技巧會碰到什么問題 2898次閱讀
- 單片機多任務處理方案 9318次閱讀
- 51單片機實時操作系統的基本結構與模式 5401次閱讀
- 單片機和嵌入式系統linux的區別 6890次閱讀
- 適用于測控領域的4種實時操作系統對比分析 3531次閱讀
- 淺談電腦驅動程序的工作原理 詳解電腦驅動程序意義 2.9w次閱讀
- 基于嵌入式Linux內核的系統設備驅動程序開發設計 1113次閱讀
- 單片機與嵌入式系統有什么區別和聯系? 1.4w次閱讀
- 一文看懂單片機與PLC程序設計的區別 7334次閱讀
- Windows應用程序,操作系統,計算機硬件之間的相互關系 1.2w次閱讀
- 51單片機DS1302實時時鐘驅動程序 9256次閱讀
- 基于K9F5608A的MCS-51單片機驅動程序 1966次閱讀
- 基于ADC081S051與51單片機的接口電路及驅動程序 4378次閱讀
下載排行
本周
- 1HFSS電磁仿真設計應用詳解PDF電子教程免費下載
- 24.30 MB | 128次下載 | 1 積分
- 2雷達的基本分類方法
- 1.25 MB | 4次下載 | 4 積分
- 3電感技術講解
- 827.73 KB | 2次下載 | 免費
- 4從 MSP430? MCU 到 MSPM0 MCU 的遷移指南
- 1.17MB | 2次下載 | 免費
- 5有源低通濾波器設計應用說明
- 1.12MB | 2次下載 | 免費
- 6RA-Eco-RA2E1-48PIN-V1.0開發板資料
- 35.59 MB | 2次下載 | 免費
- 7面向熱插拔應用的 I2C 解決方案
- 685.57KB | 1次下載 | 免費
- 8愛普生有源晶體振蕩器SG3225EEN應用于儲能NPC、新能源
- 317.46 KB | 1次下載 | 免費
本月
- 12024年工控與通信行業上游發展趨勢和熱點解讀
- 2.61 MB | 763次下載 | 免費
- 2HFSS電磁仿真設計應用詳解PDF電子教程免費下載
- 24.30 MB | 128次下載 | 1 積分
- 3繼電保護原理
- 2.80 MB | 36次下載 | 免費
- 4正激、反激、推挽、全橋、半橋區別和特點
- 0.91 MB | 32次下載 | 1 積分
- 5labview實現DBC在界面加載配置
- 0.57 MB | 21次下載 | 5 積分
- 6在設計中使用MOSFET瞬態熱阻抗曲線
- 1.57MB | 15次下載 | 免費
- 7GBT 4706.1-2024家用和類似用途電器的安全第1部分:通用要求
- 7.43 MB | 14次下載 | 免費
- 8AD18學習筆記
- 14.47 MB | 8次下載 | 2 積分
總榜
- 1matlab軟件下載入口
- 未知 | 935113次下載 | 10 積分
- 2開源硬件-PMP21529.1-4 開關降壓/升壓雙向直流/直流轉換器 PCB layout 設計
- 1.48MB | 420061次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233084次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費下載
- 340992 | 191360次下載 | 10 積分
- 5十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183329次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81578次下載 | 10 積分
- 7Keil工具MDK-Arm免費下載
- 0.02 MB | 73804次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65985次下載 | 10 積分
評論
查看更多