秘訣:如果主動元件是在其非線性的響應區內工作,則校準時也必須使用量測用的功率位準,以確保能夠做準確的修正。如果需要在非線性模式下,于多個功率位準進行量測,那么也必須在每一個位準下分別進行校準,并儲存起來供日后使用。
秘訣:在DUT 的頻率范圍內,檢查主動元件的頻率響應。同樣地,您應該在特定的功率位準下量測整個路徑,或是分析每一個介面的S 參數特性,并使用向量學,產生一個可以在事后套用或即時套用的模型。
秘訣:為了簡化量測和修正RF 信號路徑特性的作業,有些系統開發人員會盡可能少用主動元件,這樣做可以減少校準的工夫,以及在非線性模式工作時,因功率位準改變而造成誤差的機會。
3.3 DUT 的距離——近或遠
不論DUT 是固定在測試系統的夾具上,或是位在幾碼外的測試室中,要進行準確的修正有時相當困難。固定在夾具上的量測極具挑戰性,因為路徑通常會包括從同軸纜線轉換到微帶線式(microstripbased)的短路、開路和負載上。秘訣:如果無法使用高品質的微帶線組件的話,就需要使用網路分析儀來量測夾具、模擬阻抗、以及將那些效應從量測結果中消除。當DUT 位在遠端時,主要的問題出在纜線距離長所造成的路徑衰減,以及因溫度變化和纜線彎曲所造成的路徑差異。秘訣:若可能的話,應量測儀器和DUT之間的整個路徑,或是量測路徑上每一個相關的元素,并使用向量學將其復數響應值合起來,以分析出路徑衰減的程度。
4 秘訣四:別輕忽了所有與儀器相連的東西
設備制造商在訂定每一部儀器的效能規格時,最多只會提供到面板上供應信號和量測信號用之接頭的規格而已。從接頭開始,所有出現在儀器和DUT 之間的東西都可能會影響儀器的效能和量測的穩定一致性。在RF 和微波的頻率及功率位準下,通常有三大罪魁禍首:纜線、切換器和信號整波器(signal conditioner)。
4.1 選擇正確的纜線類型
訂定測試系統的規格時,需決定要使用哪一種纜線來連接各個裝置,而且您可能還可以指定切換矩陣中所要使用的類型。一般的原則是,穩定的纜線具有較低的注入損耗和較佳的VSWR,因此量測的穩定一致性較高。在高頻下,最常使用的三種纜線類型為:半硬式( s e m i -rigid)、軟性(conformable)和彈性(flexible)的纜線。
4.1.1 半硬式纜線
顧名思義,這種纜線不會輕易地改變形狀,可確保極佳的效能和穩定。高品質的半硬式纜線在生產制造的過程中,可透過施以符合MIL 標準的溫度循環刺激(temperature cycling)法,達到更高的穩定度。在成形步驟后使用溫度循環刺激法,可以消除內部的壓力,避免已成形的纜線日后變形。這些纜線中使用之介電質的品質也會影響其量測的效能。Solid Teflon是最常用的,但會造成注入損耗。Expanded Teflon是目前最佳的替代品,可提供較低的注入損耗和較寬的頻率范圍。這種對細節的注重全都會反映在這些纜線的成本上,相較于軟性或彈性的纜線,其價格高出許多。
4.1.2 軟性纜線
這種纜線的穩定度比半硬式纜線差,因為它們很容易塑形和重新塑形,這樣的彈性會影響量測的穩定和長期的可靠度。
4.1.3 彈性纜線
有時又稱為“ 測試儀器等級的纜線”,通常可以提供良好的相位穩定度和低注入損耗,但相對地價格也不低。這種纜線的維護需求較高,使用時需要額外地小心,不然嚴重的變形可能會改變其電性特性,造成量測結果不準確。
4.2 避免切換相關的問題
切換對整體系統功能的運作相當重要,可以將儀器和DUT 之間的信號與電源供應連接作業自動化。由于大部分作為信號源以及需要量測的信號都會經過切換矩陣,因此其規格若有任何缺失,可能會影響量測的效能、速度和穩定。在高頻下,有三項規格特別重要:隔離度、VSWR 和注入損耗。
4.2.1 擴大隔離
存在一個或多個高功率的信號時,信號路徑間的洩漏可能會讓低功率信號的量測變得極為困難。(當高功率和低功率的信號同時繞經一個切換矩陣時,最可能發生這種狀況。)秘訣:選擇隔離度規格為90 dB 或更佳的切換器,這樣一來就可以減少洩漏,可能也比較不需要將信號繞經不同的切換組件了。
4.2.2 降低VSWR
高VSWR 可能造成相位誤差,因而影響向量和調變量測 的準確度。切換矩陣的VSWR 與矩陣中使用之同軸切換器的VSWR 直接相關,而個別切換器的VSWR 會取決于它的機構尺寸和容許度。秘訣:可以使用與所需的頻寬相較算是短的纜線,進一步將VSWR 降到最低。如果因為高頻寬的需求或機構上的要求而無法使用短的纜線,那么最好的替代方法就是透過損耗墊或損耗性纜線,將注入損耗加入傳輸線中,如此一來,就可以在想要的頻率范圍,減小VSWR 引起之漣波的振幅,不過,代價是整體的注入損耗較高。
評論
查看更多