后臺處理,結果觀察
3-D矢量分析得不到通量線(磁力線),但可利用磁通密度矢量顯示來觀察通量路徑。使用 Post1通用后臺處理器觀察最后載荷步結果磁感應強度B矢量圖,如圖4所示。
使用Post26時間歷程后臺處理器查看次級負載 R3的感應電動勢,并輸出曲線圖,如圖5所示。
三維仿真數據與實測數據對比
為了分析方便,在仿真時將磁芯設為線性導磁材料,相對磁導率定為:2500;不考慮渦流損耗;氣隙間距:1mm;初級電壓加幅值為15V的正弦波,頻率為 10kHz;負載為100Ω。根據上面分析,實驗數據與仿真數據如表3所示:
實測與仿真數據對比
從表3的分析對比可以看出,三維仿真和實測的效率誤差在5%左右。其中次級的電流電壓值基本和實際測量的電流電壓值相符合。篇幅所限,表中只列出初級電壓在15V,頻率在10kHz的情況。因為仿真中,磁芯的磁導率假設為線性的,而實際中的鐵氧體磁特性用非線性的B-H磁滯回線來表示的,所以仿真和實測值存在的一定的誤差。
三維仿真數據與二維仿真數據對比
為了檢驗三維仿真的準確性,將其與以前做過的二維仿真進行對比,仿真環境:初級電壓15V正弦波,負載100Ω,氣隙1mm;通過變化頻率,觀察次級感應電壓與傳輸效率的變化,如圖6、圖7所示。
由上圖可知,三維仿真與二維仿真在變化頻率時,二者曲線走勢基本一致,但由于選擇的實體單元、設置參數的方式以及分析方法等方面的不同,所以存在一定的誤差。
利用ANSYS對松耦合變壓器進行建模仿真,可以改變變壓器的關鍵參數,利用場路耦合可以改變負載等參數,求出初級次級的電流電壓,然后求出變壓器的效率;通過改變松耦合變壓器的主要參數,可以得到影響松耦合變壓器效率的關鍵參數以及它們對松耦合變壓器效率的影響規律;尤其ANSYS三維仿真,不受模型形狀的限制,可以隨意改變變壓器模型,進而推動對松耦合變壓器的研究。