偏轉線圈結構
9、阻流電感器
阻流電感器是指在電路中用以阻塞交流電流通路的電感線圈,它分為高頻阻流線圈和低頻阻流線圈。
1.高頻阻流線圈 高頻阻流線圈也稱高頻扼流線圈,它用來阻止高頻交流電流通過。
高頻阻流線圈工作在高頻電路中,多用采空心或鐵氧體高頻磁心,骨架用陶瓷材料或塑料制成,線圈采用蜂房式分段繞制或多層平繞分段繞制。
2.低頻阻流線圈 低頻阻流線圈也稱低頻扼流圈,它應用于電流電路、音頻電路或場輸出等電路,其作用是阻止低頻交流電流通過。
通常,將用在音頻電路中的低頻阻流線圈稱為音頻阻流圈,將用在場輸出電路中的低頻阻流線圈稱為場阻流圈,將用在電流濾波電路中的低頻阻流線圈稱為濾波阻流圈。
低頻阻流圈一般采用“E”形硅鋼片鐵心(俗稱矽鋼片鐵心)、坡莫合金鐵心或鐵淦氧磁心。為防止通過較大直流電流引起磁飽和,安裝時在鐵心中要留有適當空隙。
六、自感與互感
自感
當線圈中有電流通過時,線圈的周圍就會產生磁場。當線圈中電流發生變化時,其周圍的磁場也產生相應的變化,此變化的磁場可使線圈自身產生感應電動勢(感生電動勢)(電動勢用以表示有源元件理想電源的端電壓),這就是自感。
互感
兩個電感線圈相互靠近時,一個電感線圈的磁場變化將影響另一個電感線圈,這種影響就是互感。互感的大小取決于電感線圈的自感與兩個電感線圈耦合的程度,利用此原理制成的元件叫做互感器。
七、最小值與最大值
電感L的最小值由所需維持的最小負載電流的要求來決定。流過電感L的電流分為連續和不連續兩種工作情況。不管是哪種情況,只要是輸入、輸出電壓保持不變,則電流波形的斜率也不會因為負載電流的減小而改變。
如果負載電流I。逐漸減小,在電感L中的波動電流最小值剛好為零時,定義為臨界電流Ioc則Ioc應等于電流峰一峰值的-半,即
Ioc=1/2△iL
當Io 《 Ioc時,iL將進人不連續狀態Io ≥ Ioc時iL為連續狀態。
單端正激式轉換器的閉環控制電路如圖所示。圖中Cc為去磁復位繞組△的分布電容。連續狀態的傳遞函數有兩個極點;不連續狀態的傳遞函數只有一個極點,如果想在狀態轉換過程中都能穩定地工作,就必須要進行小心細致的設計。
單端正激式轉換器的閉環控制電路
L值的另一個限制因素將出現在應用于多組輸出電壓的情況。因為控制環只與-個相關的輸出端閉環,當此輸出端電流低于臨界值時,占空比將減少以保持此輸出端的電壓不變。對于其他的輔助輸出端,假定其所帶的是恒定負載,在上述占空比下降的情況下,其電壓也下降。很明顯這不是所希望的,因此在多組輸出電壓時,為了保持輔助輸出電壓不變,電感L的值應大于所需的最小值。也就是說,如果輔助電壓要保持在一定的波動范圍內時,則主輸出的電感必須一直超過臨界值,即一直在連續狀態。
電感的最大值一般受效率、體積和造價的限制,帶直流電流運行的大電感的造價是昂貴的。從J眭能上來看,電感L過大將使調節系統的反應速度減慢。因為過大的L在負載出現較大的瞬態變化時限制了輸出電流的最大變化率。
八、共模電感
(一)、初識共模電感
共模電感(Common mode Choke),也叫共模扼流圈,常用于電腦的開關電源中過濾共模的電磁干擾信號。在板卡設計中,共模電感也是起EMI濾波的作用,用于抑制高速信號線產生的電磁波向外輻射發射。
小知識:EMI(Electro Magnetic Interference,電磁干擾)
計算機內部的主板上混合了各種高頻電路、數字電路和模擬電路,它們工作時會產生大量高頻電磁波互相干擾,這就是EMI。EMI還會通過主板布線或外接線纜向外發射,造成電磁輻射污染,不但影響其他的電子設備正常工作,還對人體有害。
PC板卡上的芯片在工作過程中既是一個電磁干擾對象,也是一個電磁干擾源。總的來說,我們可以把這些電磁干擾分成兩類:串模干擾(差模干擾)與共模干擾(接地干擾)。以主板上的兩條PCB走線(連接主板各元件的導線)為例,所謂串模干擾,指的是兩條走線之間的干擾;而共模干擾則是兩條走線和PCB地線之間的電位差引起的干擾。
串模干擾電流作用于兩條信號線間,其傳導方向與波形和信號電流一致;共模干擾電流作用在信號線路和地線之間,干擾電流在兩條信號線上各流過二分之一且同向,并以地線為公共回路。
串模干擾和共模干擾
如果板卡產生的共模電流不經過衰減過濾(尤其是像USB和IEEE 1394接口這種高速接口走線上的共模電流),那么共模干擾電流就很容易通過接口數據線產生電磁輻射-在線纜中因共模電流而產生的共模輻射。美國FCC、國際無線電干擾特別委員會的CISPR22以及我國的GB9254等標準規范等都對信息技術設備通信端口的共模傳導干擾和輻射發射有相關的限制要求。
為了消除信號線上輸入的干擾信號及感應的各種干擾,我們必須合理安排濾波電路來過濾共模和串模的干擾,共模電感就是濾波電路中的一個組成部分。
共模電感實質上是一個雙向濾波器:一方面要濾除信號線上共模電磁干擾,另一方面又要抑制本身不向外發出電磁干擾,避免影響同一電磁環境下其他電子設備的正常工作。
上圖是我們常見的共模電感的內部電路示意圖,在實際電路設計中,還可以采用多級共模電路來更好地濾除電磁干擾。此外,在主板上我們也能看到一種貼片式的共模電感,其結構和功能與直立式共模電感幾乎是一樣的。
(二)、從工作原理看共模電感
為什么共模電感能防EMI要弄清楚這點,我們需要從共模電感的結構開始分析。
共模電感濾波電路
上圖是包含共模電感的濾波電路,La和Lb就是共模電感線圈。這兩個線圈繞在同一鐵芯上,匝數和相位都相同(繞制反向)。這樣,當電路中的正常電流流經共模電感時,電流在同相位繞制的電感線圈中產生反向的磁場而相互抵消,此時正常信號電流主要受線圈電阻的影響(和少量因漏感造成的阻尼);當有共模電流流經線圈時,由于共模電流的同向性,會在線圈內產生同向的磁場而增大線圈的感抗,使線圈表現為高阻抗,產生較強的阻尼效果,以此衰減共模電流,達到濾波的目的。
事實上,將這個濾波電路一端接干擾源,另一端接被干擾設備,則La和C1,Lb和C2就構成兩組低通濾波器,可以使線路上的共模EMI信號被控制在很低的電平上。該電路既可以抑制外部的EMI信號傳入,又可以衰減線路自身工作時產生的EMI信號,能有效地降低EMI干擾強度。
小知識:漏感和差模電感
對理想的電感模型而言,當線圈繞完后,所有磁通都集中在線圈的中心內。但通常情況下環形線圈不會繞滿一周,或繞制不緊密,這樣會引起磁通的泄漏。共模電感有兩個繞組,其間有相當大的間隙,這樣就會產生磁通泄漏,并形成差模電感。因此,共模電感一般也具有一定的差模干擾衰減能力。
在濾波器的設計中,我們也可以利用漏感。如在普通的濾波器中,僅安裝一個共模電感,利用共模電感的漏感產生適量的差模電感,起到對差模電流的抑制作用。有時,還要人為增加共模扼流圈的漏電感,提高差模電感量,以達到更好的濾波效果。
從看板卡整體設計看共模電感
在一些主板上,我們能看到共模電感,但是在大多數主板上,我們都會發現省略了該元件,甚至有的連位置也沒有預留。這樣的主板,合格嗎?
不可否認,共模電感對主板高速接口的共模干擾有很好的抑制作用,能有效避免EMI通過線纜形成電磁輻射影響其余外設的正常工作和我們的身體健康。但同時也需要指出,板卡的防EMI設計是一個相當龐大和系統化的工程,采用共模電感的設計只是其中的一個小部分。高速接口處有共模電感設計的板卡,不見得整體防EMI設計就優秀。
所以,從共模濾波電路我們只能看到板卡設計的一個方面,這一點容易被大家忽略,犯下見木不見林的錯誤。 只有了解了板卡整體的防EMI設計,我們才可以評價板卡的優劣。那么,優秀的板卡設計在防EMI性能上一般都會做哪些工作呢?
●主板Layout(布線)設計
對優秀的主板布線設計而言,時鐘走線大多會采用屏蔽措施或者靠近地線以降低EMI。對多層PCB設計,在相鄰的PCB走線層會采用開環原則,導線從一層到另一層,在設計上就會避免導線形成環狀。如果走線構成閉環,就起到了天線的作用,會增強EMI輻射強度。
信號線的不等長同樣會造成兩條線路阻抗不平衡而形成共模干擾,因此,在板卡設計中都會將信號線以蛇形線方式處理使其阻抗盡可能的一致,減弱共模干擾。同時,蛇形線在布線時也會最大限度地減小彎曲的擺幅,以減小環形區域的面積,從而降低輻射強度。
主板的蛇形布線
在高速PCB設計中,走線的長度一般都不會是時鐘信號波長1/4的整數倍,否則會產生諧振,產生嚴重的EMI輻射。同時走線要保證回流路徑最小而且通暢。對去耦電容的設計來說,其設置要靠近電源管腳,并且電容的電源走線和地線所包圍的面積要盡可能地小,這樣才能減小電源的波紋和噪聲,降低EMI輻射。
當然,上述只是PCB防EMI設計中的一小部分原則。主板的Layout設計是一門非常復雜而精深的學問,甚至很多DIYer都有這樣的共識:Layout設計得優秀與否,對主板的整體性能有著極為重大的影響。
●主板布線的劃斷
如果想將主板電路間的電磁干擾完全隔離,這是絕對不可能的,因為我們沒有辦法將電磁干擾一個個地“包”起來,因此要采用其他辦法來降低干擾的程度。主板PCB中的金屬導線是傳遞干擾電流的罪魁禍首,它像天線一樣傳遞和發射著電磁干擾信號,因此在合適的地方“截斷”這些“天線”是有用的防EMI的方法。
“天線”斷了,再以一圈絕緣體將其包圍,它對外界的干擾自然就會大大減小。如果在斷開處使用濾波電容還可以更進一步降低電磁輻射泄露。這種設計能明顯地增加高頻工作時的穩定性和防止EMI輻射的產生,許多大的主板廠商在設計上都使用了該方法。