電容器充電和放電的原理是什么
當電容器接通電源以后,在電場力的作用下,與電源正極相接電容器極板的 自由電子將經過電源移到與電源負極相接的極板下,正極由于失去負電荷而帶正電,負 極由于獲得負電荷而帶負電,正,負極板所帶電荷大小相等,符號相反,見圖。電荷定 向移動形成電流,由于同性電荷的排斥作用,所以開始電流最大,以后逐漸減小,在電 荷移動過程中,電容器極板儲存的電荷不斷增加,電容器兩極板間電壓 UC 等于電源電 壓 U 時電荷停止移動,電流 I=0,
:開關閉合,通過導線的連接作用,電容器正負極板電荷中和掉。當 K 閉合時,電容器 C 正極正電荷可以移動 負極上中和掉,負極負電荷也可以移到正極中和掉,電荷逐漸減少,表現電流減小,電 壓也 逐漸減小為零。
上圖為電容器充、放電實驗電路,其中C大容量(儲存電荷多)未充電的電容器,E為內阻很小的直流電源,HL為小燈泡。
電容器的充電和放電的原理圖
電容是一種以電場形式儲存能量的無源器件。在有需要的時候,電容能夠把儲存的能量釋出至電路。電容由兩塊導電的平行板構成,在板之間填充上絕緣物質或介電物質。圖1和圖2分別是電容的基本結構和符號。
當電容連接到一電源是直流電 (DC) 的電路時,在特定的情況下,有兩個過程會發生,分別是電容的 “充電” 和 “放電”。
電容器原理——充電過程
充電過程即是電容器存儲電荷的過程,當電容器與直流電源接通后,與電源正極相連的金屬極板上的電荷便會在電場力的作用下,向與電源負極相連的金屬極板跑去,使得與電源正極相連的金屬極板失去電荷帶正電,與電源負極相連的金屬極板得到電荷帶負電(兩金屬極板所帶電荷大小相等,符號相反),電容器開始充電。
在電路中,電荷的移動形成電流,由于同性電荷的排斥作用,使得電荷移動剛開始時,電流最大,之后逐漸減小;而電容器帶電量在電荷移動開始最小,為零,在電荷移動過程中,帶電量逐漸增加,兩金屬極板間電壓逐漸增大,當其增大至與電源電壓相等時,充電完畢,電流減小為零。
若電容與直流電源相接,見圖3,電路中有電流流通。兩塊板會分別獲得數量相等的相反電荷,此時電容正在充電,其兩端的電位差vc逐漸增大。一旦電容兩端電壓vc增大至與電源電壓V相等時,vc = V,電容充電完畢,電路中再沒有電流流動,而電容的充電過程完成。
由于電容充電過程完成后,就沒有電流流過電容器,所以在直流電路中,電容可等效為開路或R = ∞,電容上的電壓vc不能突變。
電容器原理——放電過程
放電過程即是電容器釋放存儲電荷的過程,當充電完畢的電容器位于一個無電源的閉合通路中時,帶負電的金屬極板上的電荷便會在電場力的作用下,向帶正電的金屬極板上跑去,使得正負電荷中和掉,電容器開始放電。
在電路中,電荷的移動形成電流,由于異性電荷的吸引作用,使得在放電過程剛開始時,電流最大,之后逐漸減小;電容器帶電量在放電過程開始時最大,之后也逐漸減少,當帶電量減小為零時,放電完畢,電流減小為零。
由于電容器充電完畢后,電路中沒有電流流過,因此電容可起到隔直流的作用,在直流電路中,可將其看作開路。
當切斷電容和電源的連接后,電容通過電阻RD進行放電,兩塊板之間的電壓將會逐漸下降為零,vc = 0,見圖4。
在圖3和圖4中,RC和RD的電阻值分別影響電容的充電和放電速度。
電阻值R和電容值C的乘積被稱為時間常數τ,這個常數描述電容的充電和放電速度,見圖5。
電容值或電阻值愈小,時間常數也愈小,電容的充電和放電速度就愈快,反之亦然。
電容幾乎存在于所有電子電路中,它可以作為“快速電池”使用。如在照相機的閃光燈中,電容作為儲能元件,在閃光的瞬間快速釋放能量。