LED可在5奈秒的時間內產生光,而白熱燈泡的反應時間則是200毫秒,因此汽車工業已將LED運用于煞車燈上。本文將針對LED特性以及驅動LED的折沖情形進行介紹,深入探討適合LED驅動及調光的各種切換式電源拓撲,并詳細說明相關優點。
穩定電流驅動LED維持固定亮度
LED驅動仍面臨許多挑戰,要維持固定的亮度,需要以穩定電流驅動LED,且不受到輸入電壓的影響,相較于白熱燈泡單純接上電池作為電源的挑戰更大。
LED具有順向V-I特性,與二極管情形類似。白光LED的開啟閾值約為3.5伏特,在此閾值之下,通過LED的電流量非常少。超過此閾值之后,電流會以指數方式增強,造成順向電壓遞增,LED因而成為具有串聯電阻的電壓來源模型。不過須要注意,此模型僅在直流電流單一操作的情況下有效,如果LED中的直流電流改變,則模型中的電阻也應該改變,以顯現新的操作電流。在大量順向電流的情況下,LED中所消耗的電力會提升裝置溫度,改變順向壓降與動態阻抗,決定LED阻抗時,務必考慮環境的熱度。
如果LED是由降壓穩壓器驅動,除了直流電流之外,LED常會傳導電感的交流鏈波電流,根據所選擇的輸出濾波器安排情形而定。這會增加LED中電流的RMS強度,也會增加其功率的消耗,并使結點溫度升高,對LED的壽命有重大影響。如果在燈光輸出上設立70%的限制作為LED的使用年限,便可增加LED的壽命,由74℃的15,000小時,延長到63℃的40,000小時。LED中功率流失的判定方法,是將LED電阻乘上RMS電流的平方,加上由平均電流乘上順向壓降的數值。由于結點溫度是由平均功率所決定,即使出現大量的鏈波電流,對功率消耗的影響也很小。舉例來說,在降壓穩壓器當中,相等于直流輸出電流的峰間鏈波電流(Ipk-pk=Iout),總功率損耗將增加不到10%。如果是大于此程度相當多的情況,則必須降低供應的交流鏈波電流,以維持結點溫度及操作壽命。在此有一個實用的基本原則,就是結點溫度降低10℃,半導體的壽命就會增加兩倍。實際上大部分的設計,因為電感限制的關系,傾向使用低上許多的鏈波電流。另外,LED中的峰值電流,不應超過制造商指定的最大安全操作額定值。
LED應用于多種領域需多種電源拓撲支持
表1的信息可供作選擇LED驅動器最佳切換拓撲的參考。除了這些拓撲之外,也可以使用簡單的電流限制電阻或是線性穩壓器,不過這些方法通常會耗用過多功率。輸入電壓范圍、驅動的LED數目、LED電流、隔離、電磁干擾(EMI)限制以及效能,都是相關的設計參數。大部分的LED驅動電路可分為以下幾種拓撲類別:降壓、升壓、降壓升壓、SEPIC以及返馳。
圖1顯示三個基本電源拓撲的例子,第一張圖所顯示的降壓穩壓器,可使用于輸出電壓永遠小于輸入電壓的情形。圖1中,降壓穩壓器改變金屬氧化半導體場效晶體管(MOSFET)的導通時間,以控制進入LED的電流??稍竭^電阻測量電壓以進行電流偵測;電阻與LED為串聯狀態。驅動MOSFET是本方法在設計上的重大挑戰,如果從成本及效能的觀點來看,建議使用須要浮接閘極驅動的N信道FET。N信道FET須要使用驅動變壓器或是浮動驅動電路,兩者都可維持電壓高于輸入電壓。
?
圖1 供應LED電力的簡易降壓及升壓拓撲
圖1也顯示替代的降壓穩壓器(Buck #2)。在此電路中,MOSFET的驅動與接地有關,大幅降低了驅動電路的需求。本電路偵測LED電流的方法為監控FET電流,或是與LED串聯的電流偵測電阻。如果采用后者,則須要使用位準移位電路,將此信息送至接地電源,并將簡單的設計復雜化。同樣顯示于圖1中的升壓轉換器,則是在輸出電壓永遠大于輸入時使用。這種拓撲設計容易,因為MOSFET的驅動與接地有關,而電流偵測電阻也是屬于接地引用類型。此電路的缺點是在短路時,無法限制通過電感的電流,可以使用保險絲或電路斷路器,作為故障保護裝置。此外,還有一些較復雜的拓撲可提供這類保護。