交互作用決定取舍
傳感器的動態范圍一定程度上決定機器視覺系統所產生的圖像質量,位數越高,系統能夠分辨的圖像的細節就越細微。對更低的暗電流噪音和高精度的需求的日益提高,使傳感器的成本變得越來越昂貴。然而,不是所有的應用都需要精細的圖像。因此,設計師們設計了不同動態范圍的傳感器供選擇。例如,郵包分揀或電子生產檢查,8位的動態范圍就可以有效地工作。但是,醫療和空中偵察就需要14位的動態范圍。
應用需求還對傳感器的第二項特征速度提出了要求
速度是比動態范圍更直觀的特征,它只是衡量傳感器采集和傳送圖像到系統的速度有多快。傳感器的速度也包括兩個方面:一個是幀頻,也就是傳感器傳送像素數據到系統所需要的時間。另外就是傳感器為了采集一幅有用的圖像所需的曝光時間。幀頻永遠都不會比曝光時間快,因此幀頻是用來說明傳感器性能的通用量值。
在加工檢查類的應用中,傳感器的速度決定系統的輸出。如果每一幅圖像代表待檢的一個零件,那么系統每秒能夠檢查的零件數量不會高于傳感器每秒能夠發送的幀數。當成像的物體處于運動狀態時,為防止出現圖像模糊,必須要求高的采集速度。因此對于高輸出量的檢測系統和對高速運動物體的成像應用需要高速的傳感器。
速度和動態范圍是相互關聯的,為了快速地傳送圖像,傳感器必須快速地對每一個像素的數據進行數字化。這就意味著模擬到數字轉換器需要快速地形成一個穩定的輸出。
從物理層面和設計角度上講,速度應該讓步于動態范圍。電路運行的速度越快,產生的熱量就越多。傳感器的暗電流噪音隨著溫度的增加而增加,因此傳感器的速度越高,其噪音就越大,動態范圍就越低。高速的傳感器比低速的傳感器的噪音更大,而且能提供的動態范圍更低。
傳感器的速度與其第三項特征響應度也是相關聯的
應用中所需的幀頻越高,用于曝光的時間就越少。為了減少曝光時間,設計師需要增加光照的亮度,如果不增加亮度,就只能選擇高響應度的傳感器。
響應度是指在給定的曝光條件下,所產生的信號的強度(V)。在圖像傳感器中,有三個因素控制響應度:第一是量子的效率,或者說是每個光子所產生的電子的數量。第二個要素是存儲電荷(q)的傳感器輸出電路的電容(C)的大小,電荷的信號電壓公式是V=q/C。第三個要素是傳感器的輸出放大器增益。如果傳感器在與噪音等量的曝光水平下運行時,增益本身并不能提高傳感器的響應度。
開發人員在為他們的機器視覺系統選購傳感器時,必須在動態范圍,速度和響應度這三個關鍵要素之間做出取舍。高速度和低光照度將導致噪音增加并降低動態范圍。在動態范圍允許的情況下,對成像細節的高要求也需要提高光照強度以彌補較低的響應度。傳感器本身所具有的物理屬性,不可避免地要在這三項關鍵要素之間做出平衡。
以上提到的三項關鍵要素并不是構成傳感器選擇的唯一考量,另外還有兩項重要的因素:傳感器的分辨率和像素間距,其中任何一項都能夠影響圖像的質量,并且與上述三項關鍵要素相互作用。
分辨率是指由多少個像素構成一幅圖像,它是反映傳感器尺寸和像素間距的量值。應用所需要的傳感器的分辨率決定于幾項相關的要素:包括視野、工作距離、傳感器大小和像素間距以及系統所要求的采集空間細節所需的像素的數量等。傳感器的分辨率越高,其時鐘必須運行得越快,以獲得需要的幀頻。因此,傳感器的分辨率對速度有非常大的影響。
像素間距定義單個像素區域的大小,與傳感器的大小共同作用來決定傳感器的分辨率。由于傳感器通常只有有限的大小可選,所以像素的間距越小,其分辨率就越高。像素間距能夠影響響應度,但是間距越小,每個像素能夠采集光子的活動區域就越小。
最終,所有這些傳感器的要素都要與相機的其它部件相互影響。相機鏡頭的分辨率是通過調制解調函數(MTF)來衡量的,例如,鏡頭的分辨率必須與傳感器的像素間距相匹配,才能獲得理想的成像質量。在傳感器分辨率允許的范圍內,一個5微米MTF的鏡頭在3微米的像素間距的傳感器上所成的黑白線模式只能形成灰色的圖像。因此,在選購傳感器時必須采購與之匹配的其它系統部件。
最重要的一點是要充分理解應用對傳感器動態范圍、速度和響應度的需求。需求決定哪些性能是在可接受的范圍之內,最終決定系統的其它部件的要求。