電荷藕合器件圖像傳感器CCD(Charge Coupled Device),它使用一種高感光度的半導體材料制成,能把光線轉變成電荷,通過模數轉換器芯片轉換成數字信號,數字信號經過壓縮以后由相機內部的閃速存儲器或內置硬盤卡保存,因而可以輕而易舉地把數據傳輸給計算機,并借助于計算機的處理手段,根據需要和想像來修改圖像。
CCD傳感器分類
面陣CCD
面陣CCD:允許拍攝者在任何快門速度下一次曝光拍攝移動物體。面陣CCD的結構一般有3種。
第一種是幀轉性CCD。它由上、下兩部分組成,上半部分是集中了像素的光敏區域,下半部分是被遮光而集中垂直寄存器的存儲區域。其優點是結構較簡單并容易增加像素數,缺點是CCD尺寸較大,易產生垂直拖影。
第二種是行間轉移性CCD。它是目前CCD的主流產品,它們是像素群和垂直寄存器在同一平面上,其特點是在1個單片上,價格低,并容易獲得良好的攝影特性。
第三種是幀行間轉移性CCD。它是第一種和第二種的復合型,結構復雜,但能大幅度減少垂直拖影并容易實現可變速電子快門等優點。
線陣CCD
線陣CCD:用一排像素掃描過圖片,做三次曝光——分別對應于紅、綠、藍 三色濾鏡,正如名稱所表示的,線性傳感器是捕捉一維圖像。初期應用于廣告界拍攝靜態圖像,線性陣列,處理高分辨率的圖像時,受局限于非移動的連續光照的物體。
三線傳感器CCD
三線傳感器CCD:在三線傳感器中,三排并行的像素分別覆蓋RGB濾鏡,當捕捉彩色圖片時,完整的彩色圖片由多排的像素來組合成。三線CCD傳感器多用于高端數碼相機,以產生高的分辨率和光譜色階。
交織傳輸CCD:這種傳感器利用單獨的陣列攝取圖像和電量轉化,允許在拍攝下一圖像時在讀取當前圖像。交織傳輸CCD通常用于低端數碼相機、攝像機和拍攝動畫的廣播拍攝機。
全幅面CCD
全幅面CCD:此種CCD具有更多電量處理能力,更好動態范圍,低噪音和傳輸光學分辨率,全幅面CCD允許即時拍攝全彩圖片。全幅面CCD由并行浮點寄存器、串行浮點寄存器和信號輸出放大器組成。全幅面CCD曝光是由機械快門或閘門控制去保存圖像,并行寄存器用于測光和讀取測光值。圖像投攝到作投影幕的并行陣列上。此元件接收圖像信息并把它分成離散的由數目決定量化的元素。這些信息流就會由并行寄存器流向串行寄存器。此過程反復執行,直到所有的信息傳輸完畢。接著,系統進行精確的圖像重組。
CCD傳感器結構
CCD是由許多個光敏像元按一定規律排列組成的。每個像元就是一個MOS電容器(大多為光敏二極管),它是在P 型Si襯底表面上用氧化的辦法生成1層厚度約為1000A~1500A的SiO2,再在SiO2表面蒸鍍一金屬層(多晶硅),在襯底和金屬電極間加上1個偏置電壓,就構成1個MOS電容器。當有1束光線投射到MOS電容器上時,光子穿過透明電極及氧化層,進入P型Si襯底,襯底中處于價帶的電子將吸收光子的能量而躍入導帶。光子進入襯底時產生的電子躍遷形成電子-空穴對,電子-空穴對在外加電場的作用下,分別向電極的兩端移動,這就是信號電荷。這些信號電荷儲存在由電極形成的“勢阱”中。
MOS電容器的電荷儲存容量可由下式求得:
QS=Ci×VG×A
式中: QS是電荷儲存量;
Ci是單位面積氧化層的電容;
VG是外加偏置電壓;
A是MOS電容柵的面積。
由此可見,光敏元面積越大,其光電靈敏度越高。1個3相驅動工作的CCD中電荷轉移的過程。
(a)初始狀態;(b)電荷由①電極向②電極轉移;(c)電荷在①、②電極下均勻分布;(d)電荷繼續由①電極向②電極轉移;(e)電荷完全轉移到②電極;(f)3相交疊脈沖。
假設電荷最初存儲在電極①(加有10V電壓)下面的勢阱中,如圖(a)所示,加在CCD所有電極上的電壓,通常都要保持在高于某一臨界值電壓Vth,Vth稱為CCD閾值電壓,設Vth=2V。所以每個電極下面都有一定深度的勢阱。顯然,電極①下面的勢阱最深,如果逐漸將電極②的電壓由2V增加到10V,這時,①、②兩個電極下面的勢阱具有同樣的深度,并合并在一起,原先存儲在電極①下面的電荷就要在兩個電極下面均勻分布,(b)和(c)所示,然后再逐漸將電極下面的電壓降到2V,使其勢阱深度降低,(d)和(e)所示,這時電荷全部轉移到電極②下面的勢阱中,此過程就是電荷從電極①到電極②的轉移過程。如果電極有許多個,可將其電極按照1、4、7…,2、5、8…和3、6、9…的順序分別連在一起,加上一定時序的驅動脈沖,即可完成電荷從左向右轉移的過程。用3相時鐘驅動的CCD稱為3相CCD。