氮化鎵 (GaN)器件可以實現高頻、高密度電源,這是航空航天、運輸和醫療應用的理想選擇。布局印刷電路板 (PCB)時必須考慮某些設計程序和組件。例如,多層布局和帶有銅孔的跟蹤將最大限度地減少傳導路徑長度,從而減少寄生元件。將電流傳感器安裝在 PCB 上絕非易事。大多數現代傳感器都需要傳感器模塊進出單獨的跡線。還應添加特定的電路板區域,以消散電流通過分離跡線流入傳感器所產生的熱量。非接觸式電流傳感器減少了走線長度,并且除了轉換器的工作溫度之外,不需要任何額外的熱考慮。但是,必須考慮一些設計元素。本文介紹了影響 Tell-i 開發的非侵入式非接觸式電流傳感器測量的三種不同設計。該轉換器是具有 120VDC 輸入的 6.7MHz 兩相 DC/DC GaN 轉換器。
多相 MHz 轉換器 SDK
Tell-newly i 開發的 SDK 板使用兩相來超過正常的開關速度,這要歸功于 GaN MOSFET 的高功率密度和超快開關。多相配置允許交錯轉換器在 3MHz、5MHz 和出色的 6.87MHz 下實現有效切換,同時支持國際空間站 (ISS) 等系統中使用的標準 120V 總線電壓。
在高頻開關中,寄生電感和電容是顯著的缺點。GaN MOSFET 的非最佳布局可能導致更長的開啟和關閉時間,以及系統中的振蕩和不需要的尖峰。將四個 EPC2019 GaN 晶體管和兩個 LMG1210 柵極驅動器用于小型柵極驅動器和電源環路,可實現最佳且緊湊的布局。高頻去耦電容器用于圖 2所示的 EPC 實驗性推薦的最佳電源環路配置中,以優化電源環路。在 EPC GaN FET 上,以類似方式使用四個電容器組來增加回路電容并減少回路寄生效應。然后通過并聯開關節點,使用電感器連接兩個半橋。
流經轉換器的平均電流是通過監測電感電流來計算的。Tell-i Technologies DS10.2m 電流傳感器是理想的匹配,因為它超快(帶寬 DC-10MHz)、非接觸式,并且由于轉換器優化而具有隔離輸出。多相 MHz 板在 120V、6.78MHz 下的結果如下所示
At the 6.78MHz frequency produced by the interleaved converters, the DS10.2m current sensor (blue) is shown to follow the inductor current reference measurement (pink). Due to the use of magnetoresistive technology, the current sensor must adhere to strict layout considerations in order to properly detect the current. The current sensor is used to test three different layouts in order to verify the importance of layout. The effective area of the DS10.2m is where the changes are made.
Layout Consideration
Solely focusing on the area around the current sensor, the three different layouts are examples of improper and proper layout placement. Clearance is specified as the effective area around the sensor with nothing but the current carrying trace. Effective area is specified as the area around the current trace and current sensor. Figure 4 details possible current paths through the PCB layout. Red arrows indicate positive/forward current flow, blue arrows indicate negative/return current flow, and gray arrows indicate magnetic field direction.
Layout A contains no clearance over the effective area. While justified with the planes only containing ground/reference node, it is shown that there is a problem of current detection in the results based on shape and sensitivity of the sensor output. Layout A is not optimal.
Layout B contains some clearance over the effective area, allowing 50 mils of clearance around the current trace. Notice the effective area is imposed on all layers of the PCB to remove any possible interference of magnetic field. Results of layout B show accurate measurement of beginning switching moment but fail to capture the result afterwards because of interferences in returning current. Layout B is still not optimal.
布局 C 在有效區域內包含最小量,允許在當前傳感器封裝周圍留出 50 密耳的間隙。布局間隙也施加在所有層??上,僅允許有效區域中的載流跡線磁場。結果顯示,布局 C 最適合清晰準確地測量電流。電流傳感器不受回流電流的干擾,只檢測流過載流跡線的電流。布局 C 是最優布局;可以通過整個傳感器周圍的更多間隙來改善。
結論
通過適當和最佳的布局布局,可以輕松實現高頻轉換器。通過使用多相技術使有效開關頻率翻倍,也可以實現高于 1MHz 的更高頻率。為了測量平均電流,如果遵循傳感器周圍的某些布局間隙,Tell-i 的超快非接觸式電流傳感器 DS10.2m 可以準確測量。工程師推薦并首選隔離輸出,以消除由于霍爾或侵入式電流傳感器而導致的熱約束和布局變化的需要。